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ABSTRACT:  

The non-homogeneous ternary cubic diophantine equation 2322 x3xzx4wx2z2w 

is analyzed for its patterns of non-zero distinct integral solutions. A few relations between the 

solutions and special number patterns are presented.  
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INTRODUCTION:  

    The Diophantine equation offers an unlimited field for research due to their variety [1-3]. 

In particular, one may refer [4-12] for cubic equations with  three unknowns. This 

communication concerns with yet another interesting equation 2322 x3xzx4wx2z2w 

representing non-homogeneous cubic with three unknowns for determining its infinitely 

many non-zero integral points. A few relations between the solutions and special number 

patterns are presented.  
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  METHOD OF ANALYSIS: 

The given non-homogeneous ternary cubic diophantine equation is 

  2322 x3xzx4wx2z2w                                        (1) 

We illustrate below the process of obtaining  different sets of integer solutions to (1): 

Set 1: 

On completing the squares,(1) is written as 

                      322 xQ2P                                                    (2) 

where 

                           xzQ,xwP                                                                                     (3)       

After some algebra,it is observed that (2) is satisfied by 

                    )n2m(nQ,)n2m(mP 2222                                                                   (4) 

and 

                    22 n2mx                                                                                                        (5) 

From (4) and (3) ,we have 

                    )n2m()1n(z,)n2m()1m(w 2222                                                   (6) 

Thus,(5) and (6) represent the integer solutions to (1). 

Observations: 

       (i). )xw()1m( 22   is a square multiple of 6 

       (ii). wzx)nm(3x)mn(zw 3333   

      (iii). wz2)wz(x)mn(2x)mn(zw 2222   

       (iv). 233333 wz)1m(n3z)m1(zw)1n(   

      (v). wz)1n()1m(2wn2z)m1(wnw 222222   

     (vi). When 1n  ,the ratio given by 

                      
3

m

3

1m

2

P

mP12wm 
  is a square multiple of 6 

Set 2: 

Assuming (5) in (2)  and employing the method of factorization ,one obtains 
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3)n2im(Q2iP                                                                           (7) 

On equating the real and imaginary parts  ,we have 

                    3223 n2nm3Q,nm6mP                                                                          (8) 

Using (8) in (3), note  that 

                 23223222 nm6mn2mw,n2nm3n2mz                                     (9) 

Thus,(5) and (9) represent the integer solutions to (1). 

Observations: 

       (i). When 1m  , note that 

             n5tP6x2zw n,14

5

n   is a cubical integer 

       (ii). When 1n  , it is seen that 

             3

mCP2xw   is divisible by 7 

      (iii). The ratio given by 

               
m

mwxCP2 3

m 
  is a square multiple of 6 

      (iv). When 1m  ,observe that 

                12

nCPxz   is even 

      (v). When 1m  , it is obtained that 

                   18

nCP6)xz(9   is divisible by 15                   

Set 3: 

  Write (2) as 

                                1*xQ2P 322                                                                                     (10)       

Consider 1 as 

                                
9

)22i1()22i1(
1


                                                                      (11) 

Using (5) and (11) in (10) and employing the method of factorization,one has 

                                
3

)n2im)(22i1(
Q2iP

3
                                                      (12) 

Following the procedure as in Set 2 and replacing m by 3M,n by 3N,the integer 
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solutions to (1) are given by 

             
)N2MN8NM12MN6M(9w

),N2MN2NM3MN12M2(9z,)N2M(9x

223223

22322322




 

 

Note: 

   One may also take 1 on the R.H.S. of (10)  in general as 

                     
222

2222

)sr2(

)2rs2isr2()2rs2isr2(
1




  

The repetition of the above process leads to  different sets  of solutions to (1) when r and s 

take different values. 

Observations: 

 When ,1N  note that 

    (a). )18(mod0t54P18w M,6

5

M   

     (b).
 

)6(mod0180wM108P36 5

M   

     (c).
 

)6(mod0z3M432P324 3

M   

    (d).
 

)18(mod0288zP108 3

M               

 CONCLUSION: 

In this paper, we have made an attempt to obtain all integer solutions to (1). To conclude, one 

may search for integer solutions to other choices of homogeneous or non-homogeneous 3 
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